Home > Media and Technology > Information Technology > IT Applications > fake image detection market
Get a free sample of Fake Image Detection Market
Your inquiry has been received. Our team will reach out to you with the required details via email. To ensure that you don't miss their response, kindly remember to check your spam folder as well!
Form submitted successfully!
Error submitting form. Please try again.
Get a free sample of Fake Image Detection Market
Your inquiry has been received. Our team will reach out to you with the required details via email. To ensure that you don't miss their response, kindly remember to check your spam folder as well!
Form submitted successfully!
Error submitting form. Please try again.
The fake image detection industry has witnessed significant technological advancements. More advanced deep learning techniques, especially Convolutional Neural Networks (CNNs), are greatly boosting the accuracy of fake picture identification. CNNs may evaluate pictures for minute discrepancies and patterns that indicate manipulation, resulting in more accurate identification of forgeries. Advancements in data gathering and labelling techniques are resulting in richer and more diversified datasets for training AI models. These datasets provide a broader range of image types, alteration techniques, and content, allowing computers to generalize and become more robust in identifying different sorts of forgery.
Furthermore, the emergence of strong cloud computing platforms has enabled the processing capacity and scalability required to run large AI models efficiently. This allows for the real-time analysis of a large volume of images, making detection solutions more useful in a variety of applications.
For instance, in October 2023, Sumsub, a full-cycle verification platform, launched 'For Fake's Sake', a groundbreaking platform designed to detect deepfakes and synthetic fraud. This innovation enables users to estimate the likelihood of an uploaded image having been artificially created. Sumsub's in-house AI/ML Research Lab is behind the development of the platform, assembling four distinct machine learning models for deepfake and synthetic fraud detection.
The cloud-based solution segment recorded 70% of the market share in 2023, owing to their scalability and flexibility coupled with the cost-effectiveness and ease of integration of cloud solutions.
The market size of fake image detection reached USD 800 million in 2023 and will record 20% CAGR from 2024 to 2032, fueled by the growing concerns about misinformation and digital deception along with the advancements in AI and ML technologies.
North America market recorded 34% revenue share in 2023, due to region's robust technology infrastructure and presence of leading tech companies and increasing investments in cybersecurity solutions.
Prominent companies operating in the market are Amazon, Google, Microsoft Corporation, Clearview AI, DuckDuckGoose AI, Facia, Ghiro AI, Gradiant, iDenfy, Image Forgery Detector, Imagga, Intel, Meta AI, Q-integrity, Sentinel AI, and Truepic among others.