Home > Media & Technology > Generative AI in Logistics Market > Table of Contents

Generative AI in Logistics Market - By Type (Variational Autoencoder (VAE), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs), Long Short-term Memory (LSTM) Networks), By Component, By Deployment Model, By Application, By End User Forecast 2024 - 2032

  • Report ID: GMI10098
  • Published Date: Jul 2024
  • Report Format: PDF

Report Content

Chapter 1   Methodology & Scope

1.1   Research design

1.1.1    Research approach

1.1.2    Data collection methods

1.2   Base estimates and calculations

1.2.1    Base year calculation

1.2.2    Key trends for market estimates

1.3   Forecast model

1.4   Primary research & validation

1.4.1    Primary sources

1.4.2    Data mining sources

1.5   Market definitions

Chapter 2   Executive Summary

2.1   Industry 3600 synopsis, 2021-2032

Chapter 3   Industry Insights

3.1   Industry ecosystem analysis

3.2   Supplier landscape

3.2.1    Insurance providers

3.2.2    Distribution channels

3.2.3    End users

3.3   Profit margin analysis

3.4   Technology & innovation landscape

3.5   Patent analysis

3.6   Key news & initiatives

3.7   Regulatory landscape

3.8   Impact forces

3.8.1   Growth drivers

3.8.1.1   Supply chain and route planning optimization

3.8.1.2   Increased demand for warehouse management

3.8.1.3   Accuracy in demand forecasting

3.8.1.4   Achieving cost efficiency

3.9   Industry pitfalls & challenges

3.9.1.1   Data quality and availability

3.9.1.2   Complexity in integration

3.10   Growth potential analysis

3.11   Porter’s analysis

3.12   PESTEL analysis

Chapter 4   Competitive Landscape, 2023

4.1   Introduction

4.2   Company market share analysis

4.3   Competitive positioning matrix

4.4   Strategic outlook matrix

Chapter 5   Market Estimates & Forecast, By Type, 2021-2032 ($Bn)

5.1   Key trends

5.2   Variational Autoencoder (VAE)

5.3   Generative Adversarial Networks (GANs)

5.4   Recurrent Neural Networks (RNNs)

5.5   Long Short-Term Memory (LSTM) networks

5.6   Others

Chapter 6   Market Estimate & Forecast, By Component, 2021-2032 ($Bn)

6.1   Key trends

6.2   Software

6.3   Services

Chapter 7   Market Estimates & Forecast, By Deployment Mode, 2021-2032 ($Bn)

7.1   Key trends

7.2   Cloud

7.3   On-premises

Chapter 8   Market Estimates & Forecast, By Application, 2021-2032 ($Bn)

8.1   Key trends

8.2   Route optimization

8.2.1    Variational Autoencoder (VAE)

8.2.2    Generative Adversarial Networks (GANs)

8.2.3    Recurrent Neural Networks (RNNs)

8.2.4    Long Short-Term Memory (LSTM) networks

8.2.5    Others

8.3   Demand forecasting

8.3.1    Variational Autoencoder (VAE)

8.3.2    Generative Adversarial Networks (GANs)

8.3.3    Recurrent Neural Networks (RNNs)

8.3.4    Long Short-Term Memory (LSTM) networks

8.3.5    Others

8.4   Warehouse and inventory management

8.4.1    Variational Autoencoder (VAE)

8.4.2    Generative Adversarial Networks (GANs)

8.4.3    Recurrent Neural Networks (RNNs)

8.4.4    Long Short-Term Memory (LSTM) networks

8.4.5    Others

8.5   Supply chain automation

8.5.1    Variational Autoencoder (VAE)

8.5.2    Generative Adversarial Networks (GANs)

8.5.3    Recurrent Neural Networks (RNNs)

8.5.4    Long Short-Term Memory (LSTM) networks

8.5.5    Others

8.6   Predictive maintenance

8.6.1    Variational Autoencoder (VAE)

8.6.2    Generative Adversarial Networks (GANs)

8.6.3    Recurrent Neural Networks (RNNs)

8.6.4    Long Short-Term Memory (LSTM) networks

8.6.5    Others

8.7   Risk management

8.7.1    Variational Autoencoder (VAE)

8.7.2    Generative Adversarial Networks (GANs)

8.7.3    Recurrent Neural Networks (RNNs)

8.7.4    Long Short-Term Memory (LSTM) networks

8.7.5    Others

8.8   Customized logistics solutions

8.8.1    Variational Autoencoder (VAE)

8.8.2    Generative Adversarial Networks (GANs)

8.8.3    Recurrent Neural Networks (RNNs)

8.8.4    Long Short-Term Memory (LSTM) networks

8.8.5    Others

8.9   Others

8.9.1    Variational Autoencoder (VAE)

8.9.2    Generative Adversarial Networks (GANs)

8.9.3    Recurrent Neural Networks (RNNs)

8.9.4    Long Short-Term Memory (LSTM) networks

8.9.5    Others

Chapter 9   Market Estimates & Forecast, By End User, 2021-2032 ($Bn)

9.1   Key trends

9.2   Road Transportation

9.3   Railway Transport

9.4   Aviation

9.5   Shipping, and Ports

Chapter 10   Market Estimates & Forecast, By Region, 2021-2032 ($Bn)

10.1   Key trends

10.2   North America

10.2.1   U.S.

10.2.2   Canada

10.3   Europe

10.3.1   UK

10.3.2   Germany

10.3.3   France

10.3.4   Italy

10.3.5   Spain

10.3.6   Russia

10.3.7   Nordics

10.3.8   Rest of Europe

10.4   Asia Pacific

10.4.1   China

10.4.2   India

10.4.3   Japan

10.4.4   South Korea

10.4.5   ANZ

10.4.6   Southeast Asia

10.4.7   Rest of Asia Pacific

10.5   Latin America

10.5.1   Brazil

10.5.2   Mexico

10.5.3   Argentina

10.5.4   Rest of Latin America

10.6   MEA

10.6.1   South Africa

10.6.2   Saudi Arabia

10.6.3   UAE

10.6.4   Rest of MEA

Chapter 11   Company Profiles

11.1   Blue Yonder

11.2   C.H. Robinson

11.3   DHL

11.4   FedEx Corp

11.5   Google Cloud

11.6   IBM

11.7   LeewayHertz

11.8   Microsoft

11.9   Nexocode

11.10    PackageX

11.11    Salesforce

11.12    SAP SE

11.13    Schneider Electric

11.14    UPS (United Parcel Services)

11.15    XenonStack

11.16    XPO Logistics

   

   

Authors: Preeti Wadhwani, Aishwarya Ambekar

Buy Now


Premium Report Details

  • Base Year: 2023
  • Companies covered: 16
  • Tables & Figures: 350
  • Countries covered: 21
  • Pages: 270
 Download Free Sample